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Abstract—The composition of the atmosphere is significant to our ecosystem. Accordingly, there is a need to sense distributions of
atmospheric scatterers such as aerosols and cloud droplets. There is growing interest in recovering these scattering fields in
three-dimensions (3D). Even so, current atmospheric observations usually use expensive and unscalable equipment. Moreover,
current analysis retrieves partial information (e.g., cloud-base altitudes, water droplet size at cloud tops) based on simplified 1D
models. To advance observations and retrievals, we develop a new computational imaging approach for sensing and analyzing the
atmosphere, volumetrically. Our approach comprises a ground-based network of cameras. We deployed it in conjunction with additional
remote sensing equipment, including a Raman lidar and a sunphotometer, which provide initialization for algorithms and ground truth.
The camera network is scalable, low cost, and enables 3D observations in high spatial and temporal resolution. We describe how the
system is calibrated to provide absolute radiometric readouts of the light field. Consequently, we describe how to recover the volumetric
field of scatterers, using tomography. The tomography process is adapted relative to prior art, to run on large-scale domains and being
in-situ within scatterer fields. We empirically demonstrate the feasibility of tomography of clouds, using ground-based data.
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1 INTRODUCTION

SUSPENDED scattering particles are abundant in the at-
mosphere. These particles, especially aerosols, cloud

droplets and ice crystals significantly impact our life, society
and economy in different time scales. On the immediate
scale, they reduce visibility and solar power, may pollute the
air and threaten aviation. The latter impact was exemplified
by the 2010 eruption of Iceland’s Eyjafjallajökull volcano,
whose ash (aerosols) covered much of Europe’s airspace,
grounding all flights. On a short time scale, aerosols af-
fect cloud formation and precipitation. In the longer term,
aerosol and cloud processes have a significant impact on the
climate system [1].

Be it for conceiving three dimensional (3D) flight paths
that minimize hazards, managing solar power [2], [3], un-
derstanding cloud physics or improving climate predic-
tion [4], there is a need to sense spatiotemporal distributions
of these particles. The distributions express density and
micro-physical characteristics [5] in broad 3D fields (Fig. 1).
However, most current systems do not support such sens-
ing. Remote sensing methods [6] largely assume a plane-
parallel atmospheric model, in which particle characteristics
are horizontally uniform over wide spans. In tune with
the plane-parallel model [7], [8], atmospheric observational
hardware has been designed with coarse spatial resolution,
though with sophisticated multi-channel calibrated optical
sensing. Moreover, atmospheric-observing satellites have so
far been costly and difficult to repair or scale.
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Figure 1: We seek scalable multi-view radiometric imaging
and tomographic reconstruction of large scale three dimen-
sional atmospheric volumes.

Ground observation systems are easier to place in the
field and repair. Nevertheless, they have thus far been chal-
lenging to scale. Aerosol lidars [9], [10], specifically, probe
vertical profiles of the atmosphere in high vertical resolu-
tion, using excellent optics and calibration processes. How-
ever, due to their cost, they are only sparsely distributed
over the world. Hence they cannot practically provide three-
dimensional sensing.

Sensing atmospheric scatterers in 3D over wide fields re-
quires two new technologies. First is a scattering-based com-
puted tomography (CT) approach. CT [11], [12], [13], [14], [15]



is highly suitable for sensing transparent media [16], [17],
[18], [19]. It can benefit from complementary computational
advances seen in other problems, such as lighting analy-
sis [20], [21], and even neural networks [22]. CT has thus
recently been generalized to recover scattering media using
passive and other computational imaging methods [3], [23],
[24], [25], [26], [27], [28], [29], [30]. However, hardware
to sense nature accordingly and thus provide the required
data has been missing. As all CT approaches, also passive
scattering-tomography requires multi-directional imaging
of the atmospheric domain, using a well-calibrated system
having high resolution. This raises the second requirement
for sensing: a computational imaging system that can work
in the field and provide the necessary data. This paper
describes a system to meet these needs and complement
existing technologies. The system comprises a scalable and
reproducible calibrated camera network around a lidar and
a sunphotometer. Furthermore, we demonstrate ground-
based tomography of clouds using this system.

Multi-view imaging [31], [32], [33], [34] is not new to
remote sensing. Nevertheless, even high resolution multi-
angular orbiting and high altitude platforms such as
MISR [35], AirMSPI [36], and MAIA [37] require several
minutes in order to capture a domain from multiple views,
during which the atmospheric state changes. In contrast,
a camera network captures the domain simultaneously, at
any time of interest. Furthermore, a camera network on the
ground is easy to deploy, upgrade, and scale - provided that
it leverages on the economy of scale and spatial breadth
associated with cellular communication. Thus, the system is
comprised of low-cost untethered units which are part of
the internet of things (IoT). This is contrary to prior genera-
tions of sky-observing cameras [38], which are tethered and
expensive hence operated in solitude or in small unscalable
numbers per viewed field.

The scale of the network requires low-priced units.
Therefore, special care must be taken when calibrating the
network units. This is especially important because the data
is intended for quantitative tomographic recovery. Hence
the readout of the cameras must be trustworthy as scientific
radiometric instruments, contrary to systems that focus on
geometry [39], [40], [41], [42], [43], [44], [45], [46]. Hence, in
this paper, there is special attention to radiometric aspects,
in addition to the scalability of the network system.

In addition to a wide network of calibrated cameras
(radiometric imagers), the system uses an aerosol lidar and
a sunphotometer. These provide an important calibration
anchor and constraints for tomographic recovery.

The rest of this paper is organized as follows. The basics
of the image formation model are given in Sec. 2. The
interaction of sunlight with the atmosphere is described in
Sec. 3. In Sec. 4, we describe the tomographic algorithm
we use for recovering the 3D atmospheric medium. Details
on our distributed camera network are provided in Sec. 5.
Sec. 6 explains processes for calibrating the camera network,
including conversion of machine vision cameras into abso-
lute radiometric sensors. In Sec. 7, we present simulations
of the camera network. Initial real world experiments show
in Sec. 8 the feasibility of using distributed imaging for
atmospheric scattering tomography. Finally, Sec. 9 concludes
the paper with a brief summary and discussion.

2 IMAGE FORMATION

A ground-based camera samples the light field at a specific
location and in a range of directions. We now express the
signal at a pixel, for a camera which is calibrated. The
cameras and their calibration are described in Secs. 5,6. A
pixel in the camera samples a particular line of sight (LOS).
The camera location and LOS direction of a specific pixel are
jointly referred to as w. Solar radiation propagates through
the atmosphere, undergoes scattering and absorption, and
eventually reaches a camera on the ground. There, at lo-
cation and direction w, the corresponding spectral radiance
per wavelength λ is denoted Lground

λ,w , in units of [ W
cm2·Sr·nm ].

Let h be Planck’s constant and c the speed of light. The
expected number of photons at wavelength λ is the product
of light power in Watts and the factor λ

h c
. A sensor on the

ground responds to photons in a range of wavelengths. The
response of the sensor is given by the sensor’s quantum effi-
ciency, QEλ, which measures the probability for an electron
to be produced per incident photon. The expected number
density of electrons generated by photons at wavelength λ
during exposure time ∆t is

N sensor
λ,w = QEλ

λ

h c
Lground
λ,w ∆t (1)

= ΓλL
ground
λ,w ∆t [

electrons

cm2 · Sr · nm
],

where we define

Γλ = QEλ
λ

h c
. (2)

For a sensor having a linear radiometric response, the ra-
tio between N sensor

λ and the sensor readout is a fixed-value,
denoted γcam. It depends on the physical and electronic
properties of the sensor. In the case of a camera, the readout
is a gray level value of a pixel. The ratio γcam depends on
the optics, size of the pixel, and the pixel’s receptive solid
angle. Let γcam

∆t = γcam∆t. The expected graylevel is then

Îw = γcam∆t

∫
λ
N sensor
λ,w dλ = γcam

∆t

∫
λ

ΓλL
ground
λ,w dλ. (3)

Eq. (3) describes the image formation process for ground
based cameras. It relates radiance to graylevel values, as-
suming the optical transfer of the camera is uniform.

In reality, a camera has nonuniform optical transfer
(vignetting). Section 6 describes how we calibrate and com-
pensate for this nonuniformity. Empirical measurements
include random noise, which mainly originates from the
discrete nature of photons and electric charges. Typically,
this noise is modeled by a Poisson process. Denote incorpo-
ration of noise into the expected signal by the operator N .
The noisy measurement in LOS w is then

yw = N{Îw}. (4)

Direct sunlight should generally be blocked from enter-
ing the optical system (including the housing’s glass dome).
The reason is that direct sunlight creates a strong lens-
flare [42], [47] through internal reflection between optical
elements. Flare biases image readouts in a spatially varying



manner [48], thus affecting subsequent tomographic recov-
ery. Hence, the camera is equipped with a sunshader tuned
to the width of the optics and the solar direction.1

3 RADIATIVE TRANSFER FORWARD MODEL

One of the possible uses for a wide, dense radiometically
calibrated camera network is scattering tomography, e.g.,
to estimate the 3D volumetric distribution of the scatterers’
density n. The denser a voxel, the stronger the extinction of
radiation by this voxel, meaning a larger extinction coeffi-
cient, β. Estimation requires a forward model for propagation
of solar radiation through the atmosphere to the camera
network. The solar irradiance at the top of the atmosphere
(TOA), LTOA, is flux passing through a square-meter, given
in units of [ W

m2·nm ]. It is modelled using the ASTM E-490
solar spectral irradiance [49], multiplied by the cosine of the
Sun zenith angle, ΦSR:

LTOA
λ = cos ΦSRLASTM

λ . (5)

Solar radiation interacts with the atmosphere by multi-
ple scattering [23] and possibly absorption. The interaction
is modeled by radiative transfer (RT). We define light prop-
agation and interactions using an operator RT. This oper-
ator depends on the extinction field βλ of the atmospheric
medium at wavelength λ. Thus we write

Lground
λ,w = LTOA

λ RT{βλ}. (6)

Let us substituting Eq. (6) into Eq. (3). This yields the
forward model for the readout at a pixel that views LOS
w

Îw = γcam
∆t

∫
λ

ΓλL
TOA
λ RT{βλ} dλ. (7)

We use2 the spherical harmonic discrete ordinates method
(SHDOM) [50] to model RT. This can be stated as

RT{βλ} ≈ SHDOM{βλ}. (8)

Substituting Eq. (8) into Eq. (7) yields our numerical forward
model,

Fw (βλ) = γcam
∆t

∫
λ

ΓλL
TOA
λ SHDOM{βλ} dλ. (9)

Ideally, to calculate the integral in Eq. (9), RT would be
run at multiple infinitesimally narrow wavelength bands.
That would incur high computational resources. To simplify
calculations, assume that the optical parameters of the at-
mospheric medium do not change considerably across the
spectral band in which Γλ is significant. We use the color
bands Λ of the camera (Red, Green, Blue, in our case), ie.,
Λ ∈ [ΛR,ΛG,ΛB]. In each band, define

βΛ =

∫
λ βλL

TOA
λ dλ∫

λ L
TOA
λ dλ

, (10)

where each integral is across a spectral band Λ. Then, Eq. (9)
is approximated by

Fw (β) ≈ γcam
∆t SHDOM{βΛ}

∫
λ

ΓλL
TOA
λ dλ. (11)

1. The exception to this mode of operation is extrinsic geometric
calibration, described in Sec. 6.1. This process relies explicitly on direct
imaging of the sun.

2. The SHDOM code which we use can be downloaded from https:
//github.com/aviadlevis/pyshdom

(a) (b)

Figure 2: Simulated haze blobs: (a) Iso-surface visualization
of a synthetic 3D aerosol distribution. (b) The simulated
haze blobs as synthesized from the viewpoint of one of the
real cameras. The surrounding buildings and the sunshader
are masked according to the field of view of the real-world
camera.

An atmospheric voxel can be comprised of a mixture
of several types of scatterers (cloud droplets, aerosols and
air molecules). Each type has different optical properties.
The overall optical extinction coefficient is the sum of the
respective extinction coefficients

βΛ = βcloud
Λ + βaerosol

Λ + βair
Λ . (12)

Figure 2 illustrates a simulated 3D aerosol distribution in
the form of two dense blobs (the setup is described in Sec. 7)
and a corresponding synthetic camera view.

A cloud droplet has optical cross-section σcloud
Λ , which

is computed through Mie theory. Using typical parameters
taken from the literature [51], the cloud droplet size in our
tests is assumed to be Gamma-distributed, with effective
droplet radius reff = 10µm and a dimensionless effective
variance veff = 0.1. We rewrite βcloud

Λ as the product of the
(wavelength independent) droplet density n and the pre-
calculated optical cross-section

βcloud
Λ = σcloud

Λ n . (13)

4 TOMOGRAPHIC RECOVERY - INVERSE MODEL

Tomographic reconstruction seeks estimation of the optical
densities βΛ. Similarly to [23], this task is formulated as a
minimization of a data fitting cost E ,

β̂Λ = arg min
βΛ

E [y,F (βΛ)] . (14)

Here y is a vector which concatenates all measurements
yw, for all pixels (directions), spectral bands and cameras.
Generally, Eq. (14) may seek estimation of the densities of
all scatterers mentioned in Eq. (12). However, air density
varies mainly with altitude and its extinction profile βair

Λ

can be derived from data transmitted daily by radiosondes
launched by nearby meteorological stations. Consequently,
βair

Λ is not considered to be unknown.
When clouds are absent, βcloud

Λ = 0. Then the 3D dis-
tribution left to estimate by tomography is that of βaerosol

Λ .
However, 3D variations of βaerosol

Λ are usualy by far weaker
than that of βcloud

Λ , when clouds exist in the field of view. In
the latter case, we assume that aerosol concentrations (far
from industrial sources or volcanic plumes) vary mainly



Figure 3: The Raman aerosol lidar used during our exper-
iments. It is the PollyXT system by TROPOS, installed on
the roof the Meyer (EE) Building, Technion, Haifa, Israel.
The AERONET sunphotometer can be seen on top of the
installation cage.

with altitude. Then, it suffices to measure βaerosol
Λ on a

vertical line above the camera network domain. This is
achieved using an aerosol lidar (Fig. 3), which is embedded
in the sensor network.

For the purposes of demonstration and without loss of
generality, the expressions here focus on a single dominant
scatterer type, i.e either cloud droplets or aerosols. For
simplicity, we refer to estimation of cloud-droplet density,
in 3D. Denote by vector yc the intensity measurements in
all pixels (lines of sight) w of camera c. Correspondingly,
Fc (βΛ) is the vector of modelled intensities in all the pixels
and color channels of camera c, according to the forward
model (Sec. 3). Then, the cost function in Eq. (14) is set to be

E =
∑
Λ

σcloud
Λ

∑
c

|Mc[Fc (βΛ)− yc]|2 . (15)

Here Mc is a digital mask applied to camera c. This mask
was introduced in [52], [53], to attenuate the contribution of
pixels around the Sun. Pixels near the sun tend to be noisy
and with strong deviation from the model. Moreover, the
mask expresses the mechanical sun-shader, which is used
to block lens flare and saturation. The mask also marks the
surrounding buildings and trees which occlude the sky.

We optimise n by minimizing Eq. (15). To achieve this,
we use a gradient-based method according to the formula-
tion of [53]. The gradient of the fitting cost is

∂

∂n
E = (16)

2
∑
Λ

σcloud
Λ

∑
c

Qc {Mc Jc (n)}TMc[Fc (βΛ)− yc],

where T denotes transposition. Here Jc (n) = ∂
∂nFc (βΛ)

is the Jacobian. It expresses how the modelled (forward)
image in camera c varies in response to variations in n.
The matrix Qc is used for conditioning the gradient, as

(a) (b)

Figure 4: Perturbation of a back-projected ray. (a) When
back-projecting a ray through the center of a pixel’s instante-
neous field of view w, some voxels are overlooked (marked
by red rectangles). (b) Perturbation of the back-projected ray
through the support of the pixel updates all its voxels.

described in Sec. 4.3. A Jacobian of the RT can be estimated
numerically [54], [55], [56], [57], [58], [59]. We opt to use the
approximate gradient derived in [23], [53], due to its speed,
as reported in the literature.

4.1 Stochastic Gradient Descent
All LOS’s w of all pixels in all cameras in the network con-
stitute a set Snet. The number of measurements, accounting
also for three color channels is Nmeas = 3|Snet|. Tomog-
raphy estimates scattering characteristics in Ngrid voxels.
When Ngrid and Nmeas, are large, the gradient calculation
step (Eq. 16) can become computationally expensive.

To speed up the optimization, it is possible to select at
each iteration a different subset Ssub ⊂ Snet of all measure-
ments, and use only this subset when calculating Eq. (16).
The subset can be selected independently each time or by
weighted sampling from the fit cost (15). In both cases,
this method is equivalent to stochastic gradient descent
(SGD) [60]. We found that this form of SGD brings sig-
nificant speedup to the convergence of the cost function,
though some experimentation is needed for finding the right
size of the subset. If the subset is too large, each iteration
takes longer to calculate. If the subset is too small, noise
introduced by SGD inhibits practical convergence.

4.2 Back-Projection Perturbation
In perspective cameras, each pixel has a receptive field
(angular support) in the form of a cone around w (Fig. 4a),
denoted Cw. A single LOS back-projected from the center of
the pixel overlooks some voxels which have (at least par-
tial) overlap with Cw. Densely sampling w increases Nmeas

and makes calculation of Eq. (16) prohibitively expensive.
Instead, in each iteration, per pixel, a random ray ω∗ ∈ Cw
is selected. In a sense, this method complements the SGD
described in section 4.1.

4.3 Conditioning
The algorithm in [23] was developed and tested on im-
ages acquired far from the scattering domain. In this



(a) (b)

Figure 5: The difference between spaceborne and in-situ
setups: (a) The camera is far from the scattering domain. The
LOSs of different pixels are approximately parallel. Voxels k
and m have similar contribution to the fitted signals. (b) The
cameras are near the scattering domain. Voxels close to the
camera (e.g. voxel k) affect more LOSs than distant voxels
(e.g. voxel m).

case (Fig. 5a), all grid voxels are similarly observed. How-
ever when the cameras are near or even inside the scattering
medium, as is the case for ground-based cameras (Fig. 5b),
some voxels affect the optimization more than others. As
a consequence, the voxels near the cameras get updated
more frequently and this leads to slow convergence [53] in
analogy to ill-conditioned problems. To assist convergence,
there is a need to condition the gradient in Eq. (16). This is
achieved by multiplying the gradient by a diagonal matrix
Qc. Element (k, k) of Qc is the reciprocal of the number
of random LOS rays [53] which originate from the lens of
camera c and pass through voxel k.

5 DISTRIBUTED RADIOMETRIC IMAGERS

Our computational imaging system is an autonomous radio-
metric imaging sensor network. It is designed for large scale
deployment. Each camera is untethered and builds on the
infrastructure of cellular communication technologies. Each
unit has a lot in common with a smartphone: it has a small
built-in computer board (we used the Hardkernel Odroid U3),
which controls a camera and a cellular communication mo-
dem. As such, the units capitalize on the economy of scale
of these off-the-shelf devices. The main distinction from
commercial cellular phones is a robust structure, sustainable
outdoors, with no maintenance for weeks.

The unit is solar powered. Solar energy stored in bat-
teries sustain operation under partially clouded skies and at
night. All the electronics reside in a standard housing, which
is customized to hold the camera housing, external sun-
shader motor and an automobile windscreen washer. The
washer automatically sprays distilled water each morning
directly on the camera glass, to clean it. The washer pump
is commanded by the on-board computer, and powered by
the unit’s batteries. Distilled water leave no residue upon
drying. Water is stored in an external tank. Figure 6a shows

a single camera deployed in the field. Figure 6b shows
the network infrastructure. Figure 6c shows the mechanical
details of a unit. The camera sensor and fisheye lens are
encased in a detachable rigid sub-housing. This sub-housing
is used during camera calibration in the lab. Intrinsic and
vignetting calibrations are then unaffected when the sub-
housing is installed inside the overall system housing.

Via cellular communication, users can do two things
from anywhere in the world where cellular communica-
tion reaches: access the acquired sky images and remotely
control the camera settings. These operations are done
via a custom software having a graphical user interface.3

This software also provides interactive visualization of the
geometric output. These include LOSs of cameras, back-
projected in 3D or re-projected to other camera views and
3D visualization of the network overlaid with reconstruction
results. Additional information about the systems in given
in the Supplemental Material.

6 CALIBRATION OF THE CAMERA UNITS

The cameras need to address radiometric requirements.
Here we describe the optical aspects of a camera unit and
its calibration. The camera sensor converts photons to red-
green-blue (RGB) values. To use the images as radiometric
samples, the RGB values are converted to physical quan-
tities. First, the cameras are corrected for geometric and
optical nonuniformities. This is described in Sec. 6.1 and 6.3,
respectively. Then, the digital RGB values translate to scien-
tifically meaningful radiance values, as explained in 6.4.

6.1 Geometric Calibration
Geometric calibration maps each pixel in the camera sensor
to its LOS w. This is a two-step process. First, each pixel is
mapped to a direction in the camera’s coordinate system.
This is referred to as intrinsic calibration. Each camera has
a fisheye lens hence pixels are mapped to a hemisphere.
Intrinsic calibration is done in the lab by photographing
a checkerboard pattern multiple times while directing the
camera in different directions. These images are processed
to produce the intrinsic matrix and distortion coefficients of
the camera sensor [61].

The second step (extrinsic calibration) relates the camera
pose to locations and rotations in the Earth coordinate
system. Extrinsic calibration of any camera is done after
the unit is positioned in the field. The unit’s location is
known by a GPS receiver carried while laying the unit at
its place. Determination of the orientation (yaw, pitch and
roll angle) is done by fitting the known Sun azimuth and
elevation to its empirical projection pixel in the camera
sensor. Here we follow the method of [42]. Figure 7 shows
how solar observations are fitted to the model of solar
trajectory, according to the extrinsic calibration.

6.2 Dark Current
Dark current is caused by random generation of electrons
in the sensor. Dark current depends on the exposure time,

3. The software of the camera network, both for the on-board com-
puter and the graphical user interface, is available for download from
https://github.com/amitibo/cameranetwork.
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Figure 6: The distributed camera network. (a) A camera unit in the field. (b) The camera network can be arbitrarily scaled
up, deployed and controlled from any location in the world where there is cellular connectivity. (c) The mechanical layout
of the camera unit.

and is mainly noticeable in long exposures taken at night.
This effect is calibrated and then compensated for. Per
exposure time setting, the camera acquires multiple images
at complete darkness in the lab. These images are averaged
and stored, per exposure setting, on the unit’s on-board
computer. Afterwards, when images of targets and scenes
are acquired, the dark current image of the corresponding
exposure time is subtracted automatically.

6.3 Vignetting Correction
The optical transfer of fisheye lenses is highly nonuniform.
To compensate for this effect, a custom calibration setup
was built in a dark room. It comprises a fixed, diffuse light
source target, about 5cm wide, whose power is regulated.
It is based on the Colibri illumination system by ZEISS
Microscopy. Its output passes an optical diffuser. The entire
camera sub-housing (including sensor array, lens, cover
glass dome and the sub-housing itself) is fixed to a gimbal,

far from the target. The gimbal rotates the camera rig in
steps, across the entire range of view angles supported by
the lens (Fig. 8a). In each step, the camera acquires an image
of the fixed target. The target appears as a spot. Per spot
and color channel, the central intensity (graylevel) value
I and coordinates x of the spot are read. Afterwards, per
color channel Λ, a 2D polynomial function f fits the image
readout values. The basis for the fit is optimization,

η̂Λ = arg min
ηΛ

∑
x

|IΛ(x)− f(x; ηΛ)|2, (17)

where ηΛ are the polynomial coefficients (we got best results
when using 4th degree 2D polynomials). Large distortions
and measurement errors at the edge of the fisheye field of
view create outliers. Hence, the RANSAC algorithm is used
for the fitting. The function f(x; ηΛ) is then normalized
such that its maximum value is 1. Once these polynomial
functions are calibrated per camera unit, they are stored on
the on-board computer of that unit. Then, these functions
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Figure 7: Extrinsic calibration fit. Red circles mark the Sun
direction at different hours of the day, projected on the unit
sphere. Blue triangles mark the Sun direction measurements
at the corresponding times. Outliers are caused by clouds
momentarily covering the Sun. The RANSAC algorithm fits
the solar trajectory, even in partially clouded days.

are used automatically for vignetting compensation of each
acquired image,

ÎΛ(x) = f−1
(
IΛ(x); ηΛ

)
. (18)

Here ÎΛ(x) denotes the graylevel value corrected for
nonuniformity. The process is illustrated in Fig. 8.

6.4 Absolute Radiometric Calibration
Let the nonuniformity of the camera be calibrated and
compensated, as explained in Sec. 6.3. Then, there is a need
to quantitatively relate image graylevels to radiance. This
relation requires absolute radiometric calibration. The func-
tion Γλ (Eq. 2) can be obtained from the specifications of the
camera manufacturer. Thus, absolute radiometric calibration
amounts to the estimation of γcam. Here we describe a way
to achieve this outdoors using a sunphotometer.

A sunphotometer is a multi-channel, automatic cali-
brated multispectral sun-and-sky scanning radiometer. The
sunphotometer measures the direct solar irradiance and sky
radiance at the Earth’s surface. It records measurements at
pre-determined discrete wavelengths in near-IR and visible
spectral bands. Measurements are taken in a couple of dozen
directions (Fig. 9). We denote the set of the sunphotome-
ter LOS’s (direction and ground location) as SS−P. The
sunphotometer is part of an AErosol RObotic NETwork
(AERONET) station [62], and we place it among the network
cameras (Fig. 3).

During absolute radiometric calibration of a camera, we
position the camera in proximity to the sunphotometer.
Hence, both instruments are exposed to the same radiance.4

Moreover, recall that the camera is geometrically calibrated,
as described later in Sec. 6.1. Hence, for each camera pixel,
we know its corresponding LOS w. The sunphotometer
samples Lground

λ,w at w ∈ SS−P. Plugging these ground-truth
radiance samples into Eq. (3,4) we get

yw ≈ γcam
∆t

∫
λ

ΓλL
ground
λ,w dλ. (19)

4. On the scale of cloud features (decameters and more), the camera
and sunphotometer are essentially co-located.

(a) (b)

(c) (d)

Figure 8: Vignetting calibration: Each camera sub-housing is
set in a custom calibration setup. (a) A distant diffuse light
source is acquired while the camera sub-housing pans and
tilts in multiple directions. This scan samples and covers
the fisheye hemisphere. (b) Per color channel, a 2D poly-
nomial function is fitted to the measured intensity, creating
a vignetting correction map. (c) An image before applying
vignetting correction. (d) The same image after applying
vignetting correction. The effect is most noticeable at the
edges of the image (Best viewed in color).

Here yw is the image grayscale measurement in the pixel
corresponding to w. Eq. (19) is a linear constraint on γcam.
Using all scan directions w ∈ SS−P yields a set of linear
constraints. Estimation of γcam can use least squares,

γ̂cam = arg min
γcam

∑
w∈SS−P

∣∣∣∣yw − γcam∆t

∫
λ

ΓλL
ground
λ,w dλ

∣∣∣∣2 .
(20)

We use RANSAC to handle outliers caused by nearby build-
ings and the automatic sunshader (Fig. 9b). The value of
γcam is estimated separately for each camera color channel,
because each channel has a distinct Γλ function.

Beyond camera calibration, we use the sunphotometer
for its primary role of assessing aerosol micro-physics, and
their optical characteristics: phase function and single scat-
tering albedo. This is done through the AERONET inversion
code. The AERONET code does not derive spatially variable
aerosol properties in 3D. Instead, it relies on optical readouts
integrated over the whole atmospheric column above the
station. Hence, the AERONET products are, in a sense, an
aggregate of spatially varying aerosol properties. They are
used for initialization and a prior for 3D analysis.

An additional way to estimate γcam does not rely on
sunphotometer radiance readouts, but on the AERONET
aerosol product and lidar readouts. On a clear day at which
the lidar indicates no significant aerosols, the camera takes
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Figure 9: Absolute radiometric calibration of a camera: (a)
Almucantar scan directions of an AERONET sunphotometer
overlaid on and image taken at the same time, by a camera
placed adjacent to the sunphotometer. (b) A fit is found be-
tween the sunphotometer Almucantar measurements [blue]
and camera gray scale values [orange].

an image of the deep-blue sky. The camera essentially senses
sunlight scattered by air and some aerosols. The image is
compared to a model image of the clear sky. The latter is
obtained by running the image formation forward model
(Eqs. 11,12) for βcloud

Λ = 0, while βaerosol
Λ is set by the lidar

and AERONET. We found this approach to be effective.

7 SIMULATIONS

Using simulations, we study some capabilities and limita-
tions of ground-based tomography. The atmospheric do-
main is defined over a uniform 40×40×60 grid. We simulate
two 3D ellipsoid blobs with uniformly distributed extinction
β = 0.1 [km−1]. They are defined in [52]. One is 6km wide,
2.2km thick and centered at altitude 1.5km; the other is 4km
wide, 1.1km thick and centered at altitude 3km (Fig. 2).
Care is taken to simulate real network conditions. Hence,
the simulated cameras are positioned in 3D following the
exact locations and orientations of the true cameras of our
network. A mask is applied where real sensor pixels are
obscured by the sunshader or surrounding objects. This
enables testing algorithms under the constraints of our
particular real world setup (Fig. 2). In turn, such simulations
can be used to improve the network, so as to optimize the
quality of the results.

To allow for realistic simulations, we inject realistic noise
to rendered images (Eq. 4). Towards this, we measured
shot noise empirically in the lab, by using a camera from
our network to capture a set of images of a static scene.
Figure 10 is a scatter plot depicting the variance of the
grayscale readout in each pixel, Var(Ĩx), as a function of the
mean value per pixel, E[Ĩx]. As expected from a Poissonian
distribution, the noise variance is linearly dependent on
the mean intensity value per pixel. Let a1, a2 be the slope
and bias, respectively, of a line fitted to the noise variance
in Fig. 10. We approximate the noise distribution by a
normal distribution around the expectation value. Random
noise is added to pixel x of a simulated image Î using

noise(x) = N
(

0,
1√
20

[a1 · Î(x) + a2]

)
. (21)
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Figure 10: Measuring shot noise in our system: Noise vari-
ance vs. mean graylevel value per pixel. A linear function
(in red) is fitted.

As described in the Supplemental Material, each measure-
ment transmitted by any camera in the field relies on 20
raw frames. Therefore we scale down the variance of the
normal distribution by

√
20.

Figure 11 shows different visualizations of reconstruc-
tion results. The algorithm seems to succeed in reconstruct-
ing the distribution both in shapes and in values. How-
ever, we also notice that the sunshaders create artifacts.
All sunshaders block the view of the camera in the same
direction: the direction of the Sun. This implies that cameras
in close vicinity share the same directional “blind spot” and
do not contribute to the reconstruction of regions occluded
by the sunshader. In addition, far away cameras might not
be able to compensate the recovery in the blind spots, being
either occluded by camera surroundings or viewing at low
angles through a thick atmosphere. This can be mitigated
by deploying a larger network over a much wider span,
enforcing smoothness or another prior on the scene.

8 EXPERIMENTAL DEMONSTRATION

Several experiments were conducted using the camera net-
work. Up to 14 cameras were deployed, around Haifa Bay,
Israel, allowing for a maximal baseline of 16 km between
the farthest cameras, while keeping a denser distribution
around the Technion. Usually, the cameras were set to
take measurements every 5 minutes. At specific days, the
cameras grabbed measurements every minute.

The domain we are trying to reconstruct is very large
and not every part of it is seen from all viewpoints. To
counter this, the vertical domain of βcloud is limited to be
between 0.5km to 4km. This allows the use of a vertically
nonuniform grid. Between 0.5km to 4km, the vertical divi-
sion of the grid is dense (every 0.1km), while outside this
region, the grid is coarser. This speeds up and stabilizes
considerably each gradient descent iteration. Second, space
carving [42] is used to further constrain the cloud domain
that we seek to reconstruct. Smoothness regularization [52]
is applied during reconstruction.

Figure 12 shows reconstruction of a cloud field using
data taken by our system. As seen from the reconstructed
viewpoint (Fig. 12b) most clouds appear to be reconstructed.
The algorithm fails to recover the extinction field in shaded
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Figure 11: Reconstruction of simulated haze
blobs (from Fig. 2): (a) Visualization of the reconstructed
aerosol distribution by an iso-surface set to cross
βaerosol(x) = 0.1[km−1]. (b) Cross-section of the original
aerosol distribution. (c) Cross section of the reconstructed
aerosol distribution. The sunshaders cast “shadows” on the
reconstruction distribution, where the algorithm failed to
recover the underlying value.

.

areas (marked by a yellow ellipse). We believe that the
reason is that this gray area under a cloud has similar
radiance to the sky between clouds. Figure 13 shows iso-
surface visualization of the reconstructed cloud field. The
iso-surface marks the region where the cloud extinction is
higher than 1km−1. In order to reduce clutter, only the inner
6× 6× 10km domain in visualized.

Figure 14 shows a leave-one-out reconstruction exper-
iment. The viewpoint in Fig. 14a was not used for the
tomographic reconstruction (Eq. 14). The synthetic view-
point, Fig. 14b, and its cross-section, Fig. 14c, demonstrate
feasibility to reconstruct a cloud scene. More experimen-
tal results and the data for producing these results can
be found in https://webee.technion.ac.il/∼yoav/research/
aerosol-tomography.html

9 CONCLUSION

We describe a county-scale (and earth-scalable) camera net-
work. It samples the radiometric lightfield at ground-level
observing the sky. It enables exploration of novel remote
sensing approaches and ways to sense the atmosphere as
it really is: a 3D scattering medium. Through careful cali-
bration and comprehensive analysis, we transform standard
RGB cameras into a sophisticated multi-view radiance sam-
pling apparatus on a very large scale. We show how this

network can be used in combination with other instruments.
This coordination is useful for calibration and initialization
of tomographic reconstruction. Camera networks can sup-
ply real time data at high spatial and temporal resolution
and complement earth observing systems.

Distributed spaceborne imaging is feasible by formation
flying of orbiting nanosattlites. Hence, a mission (CloudCT,
funded by ERC) is planed [63] to demonstrate scattering
tomography from space, advance spacecraft formation tech-
nologies and provide data to reduce climate uncertain-
ties. The relative simplicity of deploying a ground-based
network compared to satellites and other remote sensing
methods, and its ability to supply unprecedented amount
of data on the atmosphere should make networks highly
valuable for observing nature quantitatively.
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J. Hernández-Andrés, and J. Romero, “Retrieval of the optical
depth using an all-sky CCD camera,” Applied Optics, vol. 47, no. 34,
pp. H182–H189, 2008.

[39] Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing: High
dynamic range in a wide field of view,” International Journal of
Computer Vision, vol. 53, no. 3, pp. 245–267, 2003.

[40] J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan, “Estimating
natural illumination from a single outdoor image,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), 2009,
pp. 183–190.

[41] ——, “Webcam clip art: Appearance and illuminant transfer
from time-lapse sequences,” ACM Transactions on Graphics (TOG),
vol. 28, no. 5, pp. 1–10, 2009.

[42] D. Veikherman, A. Aides, Y. Y. Schechner, and A. Levis, “Clouds
in The Cloud,” in Proceedings of the Asian Conference on Computer
Vision (ACCV). Springer, 2014, pp. 659–674.

[43] J. T. Kider Jr, D. Knowlton, J. Newlin, Y. K. Li, and D. P. Greenberg,
“A framework for the experimental comparison of solar and sky-
dome illumination,” ACM Transactions on Graphics (TOG), vol. 33,
no. 6, pp. 1–12, 2014.

[44] E. Bruneton, “A qualitative and quantitative evaluation of 8
clear sky models,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 12, pp. 2641–2655, 2016.

[45] D. Guimera, D. Gutierrez, and A. Jarabo, “A physically-based
spatio-temporal sky model,” in Proceedings of the XXVIII Spanish
Computer Graphics Conference. Eurographics Association, 2018,
pp. 29–37.
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